Bayesian inference of distributed time delay in transcriptional and translational regulation

Author:

Choi Boseung1ORCID,Cheng Yu-Yu2,Cinar Selahattin3,Ott William3ORCID,Bennett Matthew R45,Josić Krešimir346,Kim Jae Kyoung7ORCID

Affiliation:

1. Department of National Statistics, Korea University Sejong Campus, Sejong 30019, Korea

2. Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA

3. Department of Mathematics, University of Houston, Houston, TX 77204, USA

4. Department of Biosciences, Rice University, Houston, TX 77005, USA

5. Department of Bioengineering, Rice University, Houston, TX 77005, USA

6. Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA

7. Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea

Abstract

Abstract Motivation Advances in experimental and imaging techniques have allowed for unprecedented insights into the dynamical processes within individual cells. However, many facets of intracellular dynamics remain hidden, or can be measured only indirectly. This makes it challenging to reconstruct the regulatory networks that govern the biochemical processes underlying various cell functions. Current estimation techniques for inferring reaction rates frequently rely on marginalization over unobserved processes and states. Even in simple systems this approach can be computationally challenging, and can lead to large uncertainties and lack of robustness in parameter estimates. Therefore we will require alternative approaches to efficiently uncover the interactions in complex biochemical networks. Results We propose a Bayesian inference framework based on replacing uninteresting or unobserved reactions with time delays. Although the resulting models are non-Markovian, recent results on stochastic systems with random delays allow us to rigorously obtain expressions for the likelihoods of model parameters. In turn, this allows us to extend MCMC methods to efficiently estimate reaction rates, and delay distribution parameters, from single-cell assays. We illustrate the advantages, and potential pitfalls, of the approach using a birth–death model with both synthetic and experimental data, and show that we can robustly infer model parameters using a relatively small number of measurements. We demonstrate how to do so even when only the relative molecule count within the cell is measured, as in the case of fluorescence microscopy. Availability and implementation Accompanying code in R is available at https://github.com/cbskust/DDE_BD. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

National Institutes of Health

National Science Foundation

Korea University Grant

National Research Foundation of Korea

EWon fellowship

Welch Foundation

NIH

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3