Federated unsupervised random forest for privacy-preserving patient stratification

Author:

Pfeifer Bastian1ORCID,Sirocchi Christel2ORCID,Bloice Marcus D1ORCID,Kreuzthaler Markus1ORCID,Urschler Martin1ORCID

Affiliation:

1. Institute for Medical Informatics, Statistics and Documentation, Medical University Graz , Graz, 8010, Austria

2. Department of Pure and Applied Sciences, University of Urbino , Urbino, 61029, Italy

Abstract

Abstract Motivation In the realm of precision medicine, effective patient stratification and disease subtyping demand innovative methodologies tailored for multi-omics data. Clustering techniques applied to multi-omics data have become instrumental in identifying distinct subgroups of patients, enabling a finer-grained understanding of disease variability. Meanwhile, clinical datasets are often small and must be aggregated from multiple hospitals. Online data sharing, however, is seen as a significant challenge due to privacy concerns, potentially impeding big data’s role in medical advancements using machine learning. This work establishes a powerful framework for advancing precision medicine through unsupervised random forest-based clustering in combination with federated computing. Results We introduce a novel multi-omics clustering approach utilizing unsupervised random forests. The unsupervised nature of the random forest enables the determination of cluster-specific feature importance, unraveling key molecular contributors to distinct patient groups. Our methodology is designed for federated execution, a crucial aspect in the medical domain where privacy concerns are paramount. We have validated our approach on machine learning benchmark datasets as well as on cancer data from The Cancer Genome Atlas. Our method is competitive with the state-of-the-art in terms of disease subtyping, but at the same time substantially improves the cluster interpretability. Experiments indicate that local clustering performance can be improved through federated computing. Availability and implementation The proposed methods are available as an R-package (https://github.com/pievos101/uRF)

Funder

ECCB2024

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3