Dual Attention and Patient Similarity Network for drug recommendation

Author:

Wu Jialun12ORCID,Dong Yuxin12,Gao Zeyu12,Gong Tieliang12,Li Chen12

Affiliation:

1. School of Computer Science and Technology, Xi’an Jiaotong University , Xi’an 710049, China

2. Shaanxi Provincial Key Laboratory of Big Data Knowledge Engineering, Xi’an Jiaotong University , Xi’an 710049, China

Abstract

Abstract Motivation Artificially making clinical decisions for patients with multi-morbidity has long been considered a thorny problem due to the complexity of the disease. Drug recommendations can assist doctors in automatically providing effective and safe drug combinations conducive to treatment and reducing adverse reactions. However, the existing drug recommendation works ignored two critical information. (i) Different types of medical information and their interrelationships in the patient’s visit history can be used to construct a comprehensive patient representation. (ii) Patients with similar disease characteristics and their corresponding medication information can be used as a reference for predicting drug combinations. Results To address these limitations, we propose DAPSNet, which encodes multi-type medical codes into patient representations through code- and visit-level attention mechanisms, while integrating drug information corresponding to similar patient states to improve the performance of drug recommendation. Specifically, our DAPSNet is enlightened by the decision-making process of human doctors. Given a patient, DAPSNet first learns the importance of patient history records between diagnosis, procedure and drug in different visits, then retrieves the drug information corresponding to similar patient disease states for assisting drug combination prediction. Moreover, in the training stage, we introduce a novel information constraint loss function based on the information bottleneck principle to constrain the learned representation and enhance the robustness of DAPSNet. We evaluate the proposed DAPSNet on the public MIMIC-III dataset, our model achieves relative improvements of 1.33%, 1.20% and 2.03% in Jaccard, F1 and PR-AUC scores, respectively, compared to state-of-the-art methods. Availability and implementation The source code is available at the github repository: https://github.com/andylun96/DAPSNet.

Funder

Innovative Research Group of the National Natural Science Foundation of China

National Natural Science Foundation of China

Key Research and Development Program of Ningxia Hui Nationality Autonomous Region

The Key Research and Development Program of Shaanxi Province

Chinese Academy of Engineering

The Online and Offline Mixed Educational Service System for The Belt and Road Training in MOOC China

Project of China Knowledge Centre for Engineering Science and Technology

The innovation team from the Ministry of Education

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3