Clumppling: cluster matching and permutation program with integer linear programming

Author:

Liu Xiran1ORCID,Kopelman Naama M2,Rosenberg Noah A13

Affiliation:

1. Institute for Computational and Mathematical Engineering, Stanford University , Stanford, CA 94305, United States

2. Faculty of Sciences, Holon Institute of Technology , Holon 58109, Israel

3. Department of Biology, Stanford University , Stanford, CA 94305, United States

Abstract

Abstract Motivation In the mixed-membership unsupervised clustering analyses commonly used in population genetics, multiple replicate data analyses can differ in their clustering solutions. Combinatorial algorithms assist in aligning clustering outputs from multiple replicates so that clustering solutions can be interpreted and combined across replicates. Although several algorithms have been introduced, challenges exist in achieving optimal alignments and performing alignments in reasonable computation time. Results We present Clumppling, a method for aligning replicate solutions in mixed-membership unsupervised clustering. The method uses integer linear programming for finding optimal alignments, embedding the cluster alignment problem in standard combinatorial optimization frameworks. In example analyses, we find that it achieves solutions with preferred values of a desired objective function relative to those achieved by Pong and that it proceeds with less computation time than Clumpak. It is also the first method to permit alignments across replicates with multiple arbitrary values of the number of clusters K. Availability and implementation Clumppling is available at https://github.com/PopGenClustering/Clumppling.

Funder

National Institutes of Health

United States–Israel Binational Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3