Soft windowing application to improve analysis of high-throughput phenotyping data

Author:

Haselimashhadi Hamed1,Mason Jeremy C1ORCID,Munoz-Fuentes Violeta1,López-Gómez Federico1,Babalola Kolawole1,Acar Elif F234,Kumar Vivek5,White Jacqui5,Flenniken Ann M26,King Ruairidh7,Straiton Ewan7,Seavitt John Richard8,Gaspero Angelina8,Garza Arturo8,Christianson Audrey E8,Hsu Chih-Wei8,Reynolds Corey L8,Lanza Denise G8ORCID,Lorenzo Isabel8,Green Jennie R8,Gallegos Juan J8,Bohat Ritu8,Samaco Rodney C8,Veeraragavan Surabi8,Kim Jong Kyoung9,Miller Gregor10,Fuchs Helmult10,Garrett Lillian10,Becker Lore10,Kang Yeon Kyung11,Clary David12,Cho Soo Young13,Tamura Masaru14,Tanaka Nobuhiko14,Soo Kyung Dong15,Bezginov Alexandr23,About Ghina Bou16,Champy Marie-France16,Vasseur Laurent16,Leblanc Sophie16,Meziane Hamid16,Selloum Mohammed16,Reilly Patrick T16,Spielmann Nadine10,Maier Holger10,Gailus-Durner Valerie10,Sorg Tania16,Hiroshi Masuya14,Yuichi Obata14,Heaney Jason D8,Dickinson Mary E8,Wolfgang Wurst17,Tocchini-Valentini Glauco P18,Lloyd Kevin C Kent12,McKerlie Colin23,Seong Je Kyung15,Yann Herault19,de Angelis Martin Hrabé10,Brown Steve D M7,Smedley Damian20,Flicek Paul1,Mallon Ann-Marie7,Parkinson Helen1,Meehan Terrence F1

Affiliation:

1. European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK

2. The Centre for Phenogenomics

3. The Hospital for Sick Children, Toronto, Canada

4. Department of Statistics, University of Manitoba, Winnipeg, MB R3T 2N2 Canada

5. The Jackson Laboratory, Bar Harbor, ME 04609, USA

6. Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada

7. MRC Harwell Institute, Harwell OX11 0RD, UK

8. Baylor College of Medicine, Houston, TX, USA

9. Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, Korea

10. Helmholtz Center Munich, Neuherberg, Germany

11. Korea Mouse Phenotyping Center (KMPC), Korea

12. Mouse Biology Program, University of California Davis, Davis, CA, USA

13. National Cancer Center (NCC) & Korea Mouse Phenotyping Center (KMPC), Korea

14. RIKEN BioResource Research Center, Tsukuba, Japan

15. Seoul National University & Korea Mouse Phenotyping Center (KMPC), Korea

16. Université de Strasbourg, CNRS, INSERM, Institut Clinique de la Souris, PHENOMIN-ICS, 67404 Illkirch, France

17. Institute of Developmental Genetics, Helmholtz Centre Munich, Munich, Germany

18. CNR EMMA Monterotondo, Italy

19. Université de Strasbourg, CNRS, INSERM, Institut de Génétique, Biologie Moléculaire et Cellulaire, Institut Clinique de la Souris, IGBMC, PHENOMIN-ICS, 67404 Illkirch, France

20. William Harvey Research Institute, Charterhouse Square Barts and the London School of Medicine and Dentistry Queen Mary University of London, London EC1M 6BQ, UK

Abstract

Abstract Motivation High-throughput phenomic projects generate complex data from small treatment and large control groups that increase the power of the analyses but introduce variation over time. A method is needed to utlize a set of temporally local controls that maximizes analytic power while minimizing noise from unspecified environmental factors. Results Here we introduce ‘soft windowing’, a methodological approach that selects a window of time that includes the most appropriate controls for analysis. Using phenotype data from the International Mouse Phenotyping Consortium (IMPC), adaptive windows were applied such that control data collected proximally to mutants were assigned the maximal weight, while data collected earlier or later had less weight. We applied this method to IMPC data and compared the results with those obtained from a standard non-windowed approach. Validation was performed using a resampling approach in which we demonstrate a 10% reduction of false positives from 2.5 million analyses. We applied the method to our production analysis pipeline that establishes genotype–phenotype associations by comparing mutant versus control data. We report an increase of 30% in significant P-values, as well as linkage to 106 versus 99 disease models via phenotype overlap with the soft-windowed and non-windowed approaches, respectively, from a set of 2082 mutant mouse lines. Our method is generalizable and can benefit large-scale human phenomic projects such as the UK Biobank and the All of Us resources. Availability and implementation The method is freely available in the R package SmoothWin, available on CRAN http://CRAN.R-project.org/package=SmoothWin. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

NIH

Genome Canada and Ontario Genomics

Management Expenses Grant for RIKEN BioResource Research Center, MEXT

Korea Mouse Phenotyping Project

Ministry of Science, ICT and Future Planning through the National Research Foundation

Agence Nationale de la Recherche

German Federal Ministry of Education and Research: Infrafrontier

German Center for Diabetes Research

EU Horizon2020

Tools for Functional Annotation of the Mouse Genome

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3