Automatic improvement of deep learning-based cell segmentation in time-lapse microscopy by neural architecture search

Author:

Zhu Yanming1ORCID,Meijering Erik1ORCID

Affiliation:

1. School of Computer Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia

Abstract

Abstract Motivation Live cell segmentation is a crucial step in biological image analysis and is also a challenging task because time-lapse microscopy cell sequences usually exhibit complex spatial structures and complicated temporal behaviors. In recent years, numerous deep learning-based methods have been proposed to tackle this task and obtained promising results. However, designing a network with excellent performance requires professional knowledge and expertise and is very time-consuming and labor-intensive. Recently emerged neural architecture search (NAS) methods hold great promise in eliminating these disadvantages, because they can automatically search an optimal network for the task. Results We propose a novel NAS-based solution for deep learning-based cell segmentation in time-lapse microscopy images. Different from current NAS methods, we propose (i) jointly searching non-repeatable micro architectures to construct the macro network for exploring greater NAS potential and better performance and (ii) defining a specific search space suitable for the live cell segmentation task, including the incorporation of a convolutional long short-term memory network for exploring the temporal information in time-lapse sequences. Comprehensive evaluations on the 2D datasets from the cell tracking challenge demonstrate the competitiveness of the proposed method compared to the state of the art. The experimental results show that the method is capable of achieving more consistent top performance across all ten datasets than the other challenge methods. Availabilityand implementation The executable files of the proposed method as well as configurations for each dataset used in the presented experiments will be available for non-commercial purposes from https://github.com/291498346/nas_cellseg. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

National Computational Infrastructure

Australian Government

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Reference42 articles.

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3