scMaSigPro: differential expression analysis along single-cell trajectories

Author:

Srivastava Priyansh12ORCID,Benegas Coll Marta1,Götz Stefan1,Nueda María José3,Conesa Ana4ORCID

Affiliation:

1. BioBam Bioinformatics S.L. , Valencia, 46024, Spain

2. Department of Computer Science, University of Valencia , Valencia, 46100, Spain

3. Mathematics Department, University of Alicante , Alicante, 03690, Spain

4. Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Cientıficas (CSIC) , Paterna, 46980, Spain

Abstract

Abstract Motivation Understanding the dynamics of gene expression across different cellular states is crucial for discerning the mechanisms underneath cellular differentiation. Genes that exhibit variation in mean expression as a function of Pseudotime and between branching trajectories are expected to govern cell fate decisions. We introduce scMaSigPro, a method for the identification of differential gene expression patterns along Pseudotime and branching paths simultaneously. Results We assessed the performance of scMaSigPro using synthetic and public datasets. Our evaluation shows that scMaSigPro outperforms existing methods in controlling the False Positive Rate and is computationally efficient. Availability and implementation scMaSigPro is available as a free R package (version 4.0 or higher) under the GPL(≥2) license on GitHub at ‘github.com/BioBam/scMaSigPro’ and archived with version 0.03 on Zenodo at ‘zenodo.org/records/12568922’.

Funder

European Union's Horizon 2020 research and innovation programme

Publisher

Oxford University Press (OUP)

Reference17 articles.

1. The single-cell transcriptional landscape of mammalian organogenesis;Cao;Nature,2019

2. maSigPro: a method to identify significantly differential expression profiles in timecourse microarray experiments;Conesa;Bioinformatics,2006

3. Recent advances in trajectory inference from single-cell omics data;Deconinck;Curr Opin Syst Biol,2021

4. Integrated analysis of multimodal single-cell data;Hao;Cell 184,2021

5. Dictionary learning for integrative, multimodal and scalable single-cell analysis;Hao;Nat Biotechnol,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3