Hierarchical modelling of microbial communities

Author:

Glöckler Manuel12ORCID,Dräger Andreas1345ORCID,Mostolizadeh Reihaneh1345ORCID

Affiliation:

1. Department of Computer Science, Eberhard Karl University Tübingen, Sand 14 , Tübingen 72076, Germany

2. Machine Learning in Science, Excellence Cluster ‘Machine Learning’, Eberhard Karl University of Tübingen, Maria-von-Linden-Str. 6 , Tübingen 72076, Germany

3. Computational Systems Biology of Infection and Antimicrobial-Resistant Pathogens, Institute for Bioinformatics and Medical Informatics (IBMI) , Sand 14 , Tübingen 72076, Germany

4. German Center for Infection Research (DZIF), Partner Site Tübingen , Wilhelmstr. 27 , Tübingen 72074, Germany

5. Cluster of Excellence ‘Controlling Microbes to Fight Infections’, Eberhard Karl University Tübingen , Auf der Morgenstelle 28 , Tübingen 72074, Germany

Abstract

Abstract Summary The human body harbours a plethora of microbes that play a fundamental role in the well-being of the host. Still, the contribution of many microorganisms to human health remains undiscovered. To understand the composition of their communities, the accurate genome-scale metabolic network models of participating microorganisms are integrated to construct a community that mimics the normal bacterial flora of humans. So far, tools for modelling the communities have transformed the community into various optimization problems and model compositions. Therefore, any knockout or modification of each submodel (each species) necessitates the up-to-date creation of the community to incorporate rebuildings. To solve this complexity, we refer to the context of SBML in a hierarchical model composition, wherein each species’s genome-scale metabolic model is imported as a submodel in another model. Hence, the community is a model composed of submodels defined in separate files. We combine all these files upon parsing to a so-called ‘flattened’ model, i.e., a comprehensive and valid SBML file of the entire community that COBRApy can parse for further processing. The hierarchical model facilitates the analysis of the whole community irrespective of any changes in the individual submodels. Availability and implementation The module is freely available at https://github.com/manuelgloeckler/ncmw.

Funder

German Center for Infection Research

DFG

Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections

BMBF

Baden-Württemberg Ministry of Science

Excellence Strategy of the German Federal and State Governments

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3