PhiHER2: phenotype-informed weakly supervised model for HER2 status prediction from pathological images

Author:

Yan Chaoyang12,Sun Jialiang12,Guan Yiming12,Feng Jiuxin12,Liu Hong3,Liu Jian12ORCID

Affiliation:

1. College of Computer Science, Nankai University , Tianjin 300071, China

2. Centre for Bioinformatics and Intelligent Medicine, Nankai University , Tianjin 300071, China

3. The Second Surgical Department of Breast Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital , Tianjin 300060, China

Abstract

Abstract Motivation Human epidermal growth factor receptor 2 (HER2) status identification enables physicians to assess the prognosis risk and determine the treatment schedule for patients. In clinical practice, pathological slides serve as the gold standard, offering morphological information on cellular structure and tumoral regions. Computational analysis of pathological images has the potential to discover morphological patterns associated with HER2 molecular targets and achieve precise status prediction. However, pathological images are typically equipped with high-resolution attributes, and HER2 expression in breast cancer (BC) images often manifests the intratumoral heterogeneity. Results We present a phenotype-informed weakly supervised multiple instance learning architecture (PhiHER2) for the prediction of the HER2 status from pathological images of BC. Specifically, a hierarchical prototype clustering module is designed to identify representative phenotypes across whole slide images. These phenotype embeddings are then integrated into a cross-attention module, enhancing feature interaction and aggregation on instances. This yields a phenotype-based feature space that leverages the intratumoral morphological heterogeneity for HER2 status prediction. Extensive results demonstrate that PhiHER2 captures a better WSI-level representation by the typical phenotype guidance and significantly outperforms existing methods on real-world datasets. Additionally, interpretability analyses of both phenotypes and WSIs provide explicit insights into the heterogeneity of morphological patterns associated with molecular HER2 status. Availability and implementation Our model is available at https://github.com/lyotvincent/PhiHER2

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3