Robust and accurate deconvolution of tumor populations uncovers evolutionary mechanisms of breast cancer metastasis

Author:

Tao Yifeng12,Lei Haoyun12,Fu Xuecong3,Lee Adrian V4,Ma Jian1,Schwartz Russell13

Affiliation:

1. Department of computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA

2. Joint Carnegie Mellon-University of Pittsburgh Ph.D. Program in Computational Biology, Pittsburgh, PA 15213, USA

3. Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA

4. Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, Magee-Womens Research Institute, Pittsburgh, PA 15213, USA

Abstract

Abstract Motivation Cancer develops and progresses through a clonal evolutionary process. Understanding progression to metastasis is of particular clinical importance, but is not easily analyzed by recent methods because it generally requires studying samples gathered years apart, for which modern single-cell sequencing is rarely an option. Revealing the clonal evolution mechanisms in the metastatic transition thus still depends on unmixing tumor subpopulations from bulk genomic data. Methods We develop a novel toolkit called robust and accurate deconvolution (RAD) to deconvolve biologically meaningful tumor populations from multiple transcriptomic samples spanning the two progression states. RAD uses gene module compression to mitigate considerable noise in RNA, and a hybrid optimizer to achieve a robust and accurate solution. Finally, we apply a phylogenetic algorithm to infer how associated cell populations adapt across the metastatic transition via changes in expression programs and cell-type composition. Results We validated the superior robustness and accuracy of RAD over alternative algorithms on a real dataset, and validated the effectiveness of gene module compression on both simulated and real bulk RNA data. We further applied the methods to a breast cancer metastasis dataset, and discovered common early events that promote tumor progression and migration to different metastatic sites, such as dysregulation of ECM-receptor, focal adhesion and PI3k-Akt pathways. Availability and implementation The source code of the RAD package, models, experiments and technical details such as parameters, is available at https://github.com/CMUSchwartzLab/RAD. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

NIH

Pennsylvania Department of Health

Mario Lemieux Foundation

Breast Cancer Alliance

AWS Machine Learning Research Awards

Center for Machine Learning and Health Fellowship in Digital Health

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3