NMJ Analyser: a novel method to quantify neuromuscular junction morphology in zebrafish

Author:

Singh Jaskaran1,Pan Yingzhou Edward1,Patten Shunmoogum A12ORCID

Affiliation:

1. Institut National de la Recherche Scientifique (INRS), Centre Armand Frappier Santé Biotechnologie , Laval, QC H7V 1B7, Canada

2. Département de Neurosciences, Université de Montréal , Montreal, QC, Canada

Abstract

Abstract Motivation Neuromuscular junction (NMJ) structural integrity is crucial for transducing motor neuron signals that initiate skeletal muscle contraction. Zebrafish has emerged as a simple and efficient model to study NMJ structural morphology and function in the context of developmental neurobiology and neuromuscular diseases. However, methods to quantify NMJ morphology from voluminous data of NMJ confocal images accurately, rapidly, and reproducibly are lacking. Results We developed an ImageJ macro called “NMJ Analyser” to automatically and unbiasedly analyse NMJ morphology in zebrafish. From the Z-stack of a zebrafish hemisomite, both presynaptic and postsynaptic fluorescently labeled termini at NMJs are extracted from background signal, with larger clusters of termini being segmented into individual termini using an unbiased algorithm. The program then determines whether each presynaptic terminus is co-localized with a postsynaptic terminus and vice versa, or whether it is orphaned, and tabulates the number of orphan and co-localized pre- and postsynaptic termini. The usefulness of this ImageJ macro plugin will be helpful to quantify NMJ parameters in zebrafish, particularly during development and in disease models of neuromuscular diseases. It can enable high-throughput NMJ phenotypic screens in the drug discovery process for neuromuscular diseases. It could also be further applied to the investigation of NMJ of other developmental systems. Availability and implementation NMJ Analyser is available for download at https://github.com/PattenLab/NMJ-Analyser.git.

Funder

Natural Science and Engineering Research Council

Canadian Institutes of Health Research

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3