Molecular property prediction based on graph structure learning

Author:

Zhao Bangyi1ORCID,Xu Weixia1,Guan Jihong2,Zhou Shuigeng1ORCID

Affiliation:

1. Shanghai Key Lab of Intelligent Information Processing, and School of Computer Science, Fudan University , Shanghai 200438, China

2. Department of Computer Science and Technology, Tongji University , Shanghai 201804, China

Abstract

Abstract Motivation Molecular property prediction (MPP) is a fundamental but challenging task in the computer-aided drug discovery process. More and more recent works employ different graph-based models for MPP, which have achieved considerable progress in improving prediction performance. However, current models often ignore relationships between molecules, which could be also helpful for MPP. Results For this sake, in this article we propose a graph structure learning (GSL) based MPP approach, called GSL-MPP. Specifically, we first apply graph neural network (GNN) over molecular graphs to extract molecular representations. Then, with molecular fingerprints, we construct a molecule similarity graph (MSG). Following that, we conduct GSL on the MSG, i.e. molecule-level GSL, to get the final molecular embeddings, which are the results of fuzing both GNN encoded molecular representations and the relationships among molecules. That is, combining both intra-molecule and inter-molecule information. Finally, we use these molecular embeddings to perform MPP. Extensive experiments on 10 various benchmark datasets show that our method could achieve state-of-the-art performance in most cases, especially on classification tasks. Further visualization studies also demonstrate the good molecular representations of our method. Availability and implementation Source code is available at https://github.com/zby961104/GSL-MPP.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Reference31 articles.

1. Iterative deep graph learning for graph neural networks: better and robust node embeddings;Chen;Adv Neural Inform Process Syst,2020

2. Convolutional networks on graphs for learning molecular fingerprints;Duvenaud;Adv Neural Inform Process Syst,2015

3. How artificial intelligence is changing drug discovery;Fleming;Nature,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3