Improved identification and quantification of peptides in mass spectrometry data via chemical and random additive noise elimination (CRANE)

Author:

Seneviratne Akila J1,Peters Sean1,Clarke David1,Dausmann Michael1,Hecker Michael1,Tully Brett1ORCID,Hains Peter G1,Zhong Qing1ORCID

Affiliation:

1. ProCan®, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia

Abstract

Abstract Motivation The output of electrospray ionization–liquid chromatography mass spectrometry (ESI-LC-MS) is influenced by multiple sources of noise and major contributors can be broadly categorized as baseline, random and chemical noise. Noise has a negative impact on the identification and quantification of peptides, which influences the reliability and reproducibility of MS-based proteomics data. Most attempts at denoising have been made on either spectra or chromatograms independently, thus, important 2D information is lost because the mass-to-charge ratio and retention time dimensions are not considered jointly. Results This article presents a novel technique for denoising raw ESI-LC-MS data via 2D undecimated wavelet transform, which is applied to proteomics data acquired by data-independent acquisition MS (DIA-MS). We demonstrate that denoising DIA-MS data results in the improvement of peptide identification and quantification in complex biological samples. Availability and implementation The software is available on Github (https://github.com/CMRI-ProCan/CRANE). The datasets were obtained from ProteomeXchange (Identifiers—PXD002952 and PXD008651). Preliminary data and intermediate files are available via ProteomeXchange (Identifiers—PXD020529 and PXD025103). Supplementary information Supplementary data are available at Bioinformatics online.

Funder

Cancer Council NSW

Australian Cancer Research Foundation

Cancer Institute New South Wales

NSW Ministry of Health

The University of Sydney

Ian Potter Foundation

Medical Research Futures Fund

National Health and Medical Research Council

Australia European Union

European Commission’s Horizon 2020 Program

iPC—individualizedPaediatricCure

National Breast Cancer Foundation

Memorandum of Understanding between Children's Medical Research Institute

U.S. National Cancer Institute’s International Cancer Proteogenome Consortium

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3