A unified approach for sparse dynamical system inference from temporal measurements

Author:

Pantazis Yannis1,Tsamardinos Ioannis123

Affiliation:

1. Institute of Applied and Computational Mathematics, Foundation for Research and Technology - Hellas (FORTH), Heraklion, Greece

2. Department of Computer Science, University of Crete, Heraklion, Greece

3. Gnosis Data Analysis PC, Heraklion, Greece

Abstract

Abstract Motivation Temporal variations in biological systems and more generally in natural sciences are typically modeled as a set of ordinary, partial or stochastic differential or difference equations. Algorithms for learning the structure and the parameters of a dynamical system are distinguished based on whether time is discrete or continuous, observations are time-series or time-course and whether the system is deterministic or stochastic, however, there is no approach able to handle the various types of dynamical systems simultaneously. Results In this paper, we present a unified approach to infer both the structure and the parameters of non-linear dynamical systems of any type under the restriction of being linear with respect to the unknown parameters. Our approach, which is named Unified Sparse Dynamics Learning (USDL), constitutes of two steps. First, an atemporal system of equations is derived through the application of the weak formulation. Then, assuming a sparse representation for the dynamical system, we show that the inference problem can be expressed as a sparse signal recovery problem, allowing the application of an extensive body of algorithms and theoretical results. Results on simulated data demonstrate the efficacy and superiority of the USDL algorithm under multiple interventions and/or stochasticity. Additionally, USDL’s accuracy significantly correlates with theoretical metrics such as the exact recovery coefficient. On real single-cell data, the proposed approach is able to induce high-confidence subgraphs of the signaling pathway. Availability and implementation Source code is available at Bioinformatics online. USDL algorithm has been also integrated in SCENERY (http://scenery.csd.uoc.gr/); an online tool for single-cell mass cytometry analytics. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

European Research Council

European Union’s Seventh Framework Programme

ERC

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Reference49 articles.

1. Efficient, sparse biological network determination;August;BMC Syst. Biol.,2009

2. Studying and modelling dynamic biological processes using time-series gene expression data;Bar-Joseph;Nat. Rev. Genet.,2012

3. A phylogenetic comparative method for studying multivariate adaptation;Bartoszek;J. Theor. Biol.,2012

4. Learning networks of stochastic differential equations;Bento,2010

5. Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators;Bodenmiller;Nat. Biotechnol.,2012

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3