ICN: extracting interconnected communities in gene co-expression networks

Author:

Wu Qiong1ORCID,Ma Tianzhou2ORCID,Liu Qingzhi3,Milton Donald K2,Zhang Yuan4,Chen Shuo5

Affiliation:

1. Department of Mathematics, University of Maryland, College Park, MD 20740, USA

2. Department of Biostatistics and Bioinformatics, School of Public Health, University of Maryland, College Park, MD 20740, USA

3. Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA

4. Department of Statistics, Ohio State University, Columbus, OH 43210, USA

5. Department of Epidemiology and Public Health, Division of Biostatistics and Bioinformatics, School of Medicine, University of Maryland, Baltimore, MD 43210, USA

Abstract

Abstract Motivation The analysis of gene co-expression network (GCN) is critical in examining the gene-gene interactions and learning the underlying complex yet highly organized gene regulatory mechanisms. Numerous clustering methods have been developed to detect communities of co-expressed genes in the large network. The assumed independent community structure, however, can be oversimplified and may not adequately characterize the complex biological processes. Results We develop a new computational package to extract interconnected communities from gene co-expression network. We consider a pair of communities be interconnected if a subset of genes from one community is correlated with a subset of genes from another community. The interconnected community structure is more flexible and provides a better fit to the empirical co-expression matrix. To overcome the computational challenges, we develop efficient algorithms by leveraging advanced graph norm shrinkage approach. We validate and show the advantage of our method by extensive simulation studies. We then apply our interconnected community detection method to an RNA-seq data from The Cancer Genome Atlas (TCGA) Acute Myeloid Leukemia (AML) study and identify essential interacting biological pathways related to the immune evasion mechanism of tumor cells. Availabilityand implementation The software is available at Github: https://github.com/qwu1221/ICN and Figshare: https://figshare.com/articles/software/ICN-package/13229093. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

National Institute on Drug Abuse of the National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3