Affiliation:
1. School of Computer Science and Technology, Xidian University, Xi’an, China
Abstract
Abstract
Motivation
Single-cell RNA-sequencing (scRNA-seq) profiles transcriptome of individual cells, which enables the discovery of cell types or subtypes by using unsupervised clustering. Current algorithms perform dimension reduction before cell clustering because of noises, high-dimensionality and linear inseparability of scRNA-seq data. However, independence of dimension reduction and clustering fails to fully characterize patterns in data, resulting in an undesirable performance.
Results
In this study, we propose a flexible and accurate algorithm for scRNA-seq data by jointly learning dimension reduction and cell clustering (aka DRjCC), where dimension reduction is performed by projected matrix decomposition and cell type clustering by non-negative matrix factorization. We first formulate joint learning of dimension reduction and cell clustering into a constrained optimization problem and then derive the optimization rules. The advantage of DRjCC is that feature selection in dimension reduction is guided by cell clustering, significantly improving the performance of cell type discovery. Eleven scRNA-seq datasets are adopted to validate the performance of algorithms, where the number of single cells varies from 49 to 68 579 with the number of cell types ranging from 3 to 14. The experimental results demonstrate that DRjCC significantly outperforms 13 state-of-the-art methods in terms of various measurements on cell type clustering (on average 17.44% by improvement). Furthermore, DRjCC is efficient and robust across different scRNA-seq datasets from various tissues. The proposed model and methods provide an effective strategy to analyze scRNA-seq data.
Availability and implementation
The software is coded using matlab, and is free available for academic https://github.com/xkmaxidian/DRjCC.
Supplementary information
Supplementary data are available at Bioinformatics online.
Funder
National Natural Science Foundation of China
NSFC
Publisher
Oxford University Press (OUP)
Subject
Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献