Assessing and assuring interoperability of a genomics file format

Author:

Niu Yi Nian1ORCID,Roberts Eric G1ORCID,Denisko Danielle12ORCID,Hoffman Michael M1234ORCID

Affiliation:

1. Princess Margaret Cancer Centre, University Health Network , Toronto, ON, M5G 1L7, Canada

2. Department of Medical Biophysics, University of Toronto , Toronto, ON M5G 1L7, Canada

3. Department of Computer Science, University of Toronto , Toronto, ON M5S 2E4, Canada

4. Vector Institute for Artificial Intelligence , Toronto, ON M5G 1M1, Canada

Abstract

Abstract Motivation Bioinformatics software tools operate largely through the use of specialized genomics file formats. Often these formats lack formal specification, making it difficult or impossible for the creators of these tools to robustly test them for correct handling of input and output. This causes problems in interoperability between different tools that, at best, wastes time and frustrates users. At worst, interoperability issues could lead to undetected errors in scientific results. Results We developed a new verification system, Acidbio, which tests for correct behavior in bioinformatics software packages. We crafted tests to unify correct behavior when tools encounter various edge cases—potentially unexpected inputs that exemplify the limits of the format. To analyze the performance of existing software, we tested the input validation of 80 Bioconda packages that parsed the Browser Extensible Data (BED) format. We also used a fuzzing approach to automatically perform additional testing. Of 80 software packages examined, 75 achieved less than 70% correctness on our test suite. We categorized multiple root causes for the poor performance of different types of software. Fuzzing detected other errors that the manually designed test suite could not. We also created a badge system that developers can use to indicate more precisely which BED variants their software accepts and to advertise the software’s performance on the test suite. Availability and implementation Acidbio is available at https://github.com/hoffmangroup/acidbio. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Reference120 articles.

1. The robustness principle reconsidered;Allman;Commun. ACM,2011

2. Binning metagenomic contigs by coverage and composition;Alneberg;Nat. Methods,2014

3. Statistical confidence estimation for Hi-C data reveals regulatory chromatin contacts;Ay;Genome Res,2014

4. ATAC-seq footprinting unravels kinetics of transcription factor binding during zygotic genome activation;Bentsen;Nat. Commun,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3