PRELIMINARY TECHNICAL DISCUSSION ON A NEW RADON AND ITS PROGENY CONTINUOUS MONITOR USING TWO-FILTER METHOD

Author:

Igarashi Yu1,Nozaki Takahiro2,Mizuno Hiroyuki2,Kuroki Tomohiro2,Uchida Yuki3,Janik Miroslaw3,Iimoto Takeshi1

Affiliation:

1. Department of Environment Systems, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-City, Chiba, Japan

2. Fuji Electric Co., Ltd., Gate City Ohsaki, East Tower, 11-2, Osaki 1-chome, Shinagawa-ku, Tokyo, Japan

3. National Institutes for Quantum and Radiological Sciences and Technology, National Institute of Radiological Science, 4-9-1 Anagawa, Inage-ku, Chiba-City, Chiba, Japan

Abstract

Abstract Focusing on the scalability of Two-Filter Method, we started to develop a monitor for the concentration of radon and its progeny. In this study, we investigated the influence of a high-humidity environment on measuring radon concentration, and the influence of the decay chamber of the monitor on the measurement. In the high-humidity test, the conversion factor of (Bqm−3)/(cpm) tends to raise with increasing humidity. On the measurement of radon progeny, existence of the decay chamber of the monitor makes measurement sensitivity lower under environments of little aerosols. Radon concentration measurement by the developed monitor could be influenced by environmental humidity, and that counting loss could occur due to deposition of radon progeny inside of the decay chamber. Correction relating these would be needed based on the data of calibration tests.

Funder

Network-type Joint Usage/Research Center

Radiation Disaster Medical Science

Publisher

Oxford University Press (OUP)

Subject

Public Health, Environmental and Occupational Health,Radiology Nuclear Medicine and imaging,General Medicine,Radiation,Radiological and Ultrasound Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3