BioSamples database: FAIRer samples metadata to accelerate research data management

Author:

Courtot Mélanie1ORCID,Gupta Dipayan1ORCID,Liyanage Isuru1ORCID,Xu Fuqi1ORCID,Burdett Tony1ORCID

Affiliation:

1. European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK

Abstract

Abstract The BioSamples database at EMBL-EBI is the central institutional repository for sample metadata storage and connection to EMBL-EBI archives and other resources. The technical improvements to our infrastructure described in our last update have enabled us to scale and accommodate an increasing number of communities, resulting in a higher number of submissions and more heterogeneous data. The BioSamples database now has a valuable set of features and processes to improve data quality in BioSamples, and in particular enriching metadata content and following FAIR principles. In this manuscript, we describe how BioSamples in 2021 handles requirements from our community of users through exemplar use cases: increased findability of samples and improved data management practices support the goals of the ReSOLUTE project, how the plant community benefits from being able to link genotypic to phenotypic information, and we highlight how cumulatively those improvements contribute to more complex multi-omics data integration supporting COVID-19 research. Finally, we present underlying technical features used as pillars throughout those use cases and how they are reused for expanded engagement with communities such as FAIRplus and the Global Alliance for Genomics and Health. Availability: The BioSamples database is freely available at http://www.ebi.ac.uk/biosamples. Content is distributed under the EMBL-EBI Terms of Use available at https://www.ebi.ac.uk/about/terms-of-use. The BioSamples code is available at https://github.com/EBIBioSamples/biosamples-v4 and distributed under the Apache 2.0 license.

Funder

EMBL-EBI

Wellcome Trust

FAIRplus

ELIXIR

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3