msRepDB: a comprehensive repetitive sequence database of over 80 000 species

Author:

Liao Xingyu12ORCID,Hu Kang2,Salhi Adil1,Zou You2,Wang Jianxin2ORCID,Gao Xin1ORCID

Affiliation:

1. Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia

2. Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, P.R. China

Abstract

Abstract Repeats are prevalent in the genomes of all bacteria, plants and animals, and they cover nearly half of the Human genome, which play indispensable roles in the evolution, inheritance, variation and genomic instability, and serve as substrates for chromosomal rearrangements that include disease-causing deletions, inversions, and translocations. Comprehensive identification, classification and annotation of repeats in genomes can provide accurate and targeted solutions towards understanding and diagnosis of complex diseases, optimization of plant properties and development of new drugs. RepBase and Dfam are two most frequently used repeat databases, but they are not sufficiently complete. Due to the lack of a comprehensive repeat database of multiple species, the current research in this field is far from being satisfactory. LongRepMarker is a new framework developed recently by our group for comprehensive identification of genomic repeats. We here propose msRepDB based on LongRepMarker, which is currently the most comprehensive multi-species repeat database, covering >80 000 species. Comprehensive evaluations show that msRepDB contains more species, and more complete repeats and families than RepBase and Dfam databases. (https://msrepdb.cbrc.kaust.edu.sa/pages/msRepDB/index.html).

Funder

National Natural Science Foundation of China

King Abdullah University of Science and Technology

Hunan Provincial Natural Science Foundation

Hunan Provincial Science and Technology Program

111 Project

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3