Stabilization of Hfq-mediated translational repression by the co-repressor Crc in Pseudomonas aeruginosa

Author:

Malecka Ewelina M1,Bassani Flavia2,Dendooven Tom3,Sonnleitner Elisabeth2ORCID,Rozner Marlena2,Albanese Tanino G2,Resch Armin2,Luisi Ben3ORCID,Woodson Sarah1ORCID,Bläsi Udo2

Affiliation:

1. Department of Biophysics, 3400 N. Charles Street, Johns Hopkins University, Baltimore, MD-21218, USA

2. Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr. Bohrgasse 9/4, 1030 Vienna, Austria

3. Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK

Abstract

Abstract In Pseudomonas aeruginosa the RNA chaperone Hfq and the catabolite repression control protein (Crc) govern translation of numerous transcripts during carbon catabolite repression. Here, Crc was shown to enhance Hfq-mediated translational repression of several mRNAs. We have developed a single-molecule fluorescence assay to quantitatively assess the cooperation of Hfq and Crc to form a repressive complex on a RNA, encompassing the translation initiation region and the proximal coding sequence of the P. aeruginosa amiE gene. The presence of Crc did not change the amiE RNA-Hfq interaction lifetimes, whereas it changed the equilibrium towards more stable repressive complexes. This observation is in accord with Cryo-EM analyses, which showed an increased compactness of the repressive Hfq/Crc/RNA assemblies. These biophysical studies revealed how Crc protein kinetically stabilizes Hfq/RNA complexes, and how the two proteins together fold a large segment of the mRNA into a more compact translationally repressive structure. In fact, the presence of Crc resulted in stronger translational repression in vitro and in a significantly reduced half-life of the target amiE mRNA in vivo. Although Hfq is well-known to act with small regulatory RNAs, this study shows how Hfq can collaborate with another protein to down-regulate translation of mRNAs that become targets for the degradative machinery.

Funder

Austrian Science Fund

Wellcome Trust

AstraZeneca

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3