The lupus autoantigen La/Ssb is an Xist-binding protein involved in Xist folding and cloud formation

Author:

Ha Norbert1,Ding Nan2,Hong Ru1,Liu Rubing1,Roca Xavier1ORCID,Luo Yingyuan2,Duan Xiaowei2,Wang Xiao2,Ni Peiling2,Wu Haiyang3,Zhang Li-Feng13ORCID,Chen Lingyi2

Affiliation:

1. School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551

2. Institute of Translational Medicine, Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center for Biotherapy, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Protein Sciences, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300071, China

3. TCRCure Biological Technology Co Ltd., Guangdong, China

Abstract

Abstract Using the programmable RNA-sequence binding domain of the Pumilio protein, we FLAG-tagged Xist (inactivated X chromosome specific transcript) in live mouse cells. Affinity pulldown coupled to mass spectrometry was employed to identify a list of 138 candidate Xist-binding proteins, from which, Ssb (also known as the lupus autoantigen La) was validated as a protein functionally critical for X chromosome inactivation (XCI). Extensive XCI defects were detected in Ssb knockdown cells, including chromatin compaction, death of female mouse embryonic stem cells during in vitro differentiation and chromosome-wide monoallelic gene expression pattern. Live-cell imaging of Xist RNA reveals the defining XCI defect: Xist cloud formation. Ssb is a ubiquitous and versatile RNA-binding protein with RNA chaperone and RNA helicase activities. Functional dissection of Ssb shows that the RNA chaperone domain plays critical roles in XCI. In Ssb knockdown cells, Xist transcripts are unstable and misfolded. These results show that Ssb is critically involved in XCI, possibly as a protein regulating the in-cell structure of Xist.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Tianjin

111 Project

Fundamental Research Funds for the Central Universities

Singapore Ministry of Education Academic Research Fund

Singapore National Research Foundation

National Medical Research Council

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3