Transcriptome-wide in vivo mapping of cleavage sites for the compact cyanobacterial ribonuclease E reveals insights into its function and substrate recognition

Author:

Hoffmann Ute A1,Heyl Florian2,Rogh Said N1,Wallner Thomas1,Backofen Rolf23,Hess Wolfgang R4,Steglich Claudia4,Wilde Annegret1

Affiliation:

1. Molecular Genetics of Prokaryotes, Institute of Biology III, University of Freiburg, 79104 Freiburg, Germany

2. Bioinformatics Group, Department of Computer Science, University of Freiburg, 79110 Freiburg, Germany

3. Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany

4. Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany

Abstract

Abstract Ribonucleases are crucial enzymes in RNA metabolism and post-transcriptional regulatory processes in bacteria. Cyanobacteria encode the two essential ribonucleases RNase E and RNase J. Cyanobacterial RNase E is shorter than homologues in other groups of bacteria and lacks both the chloroplast-specific N-terminal extension as well as the C-terminal domain typical for RNase E of enterobacteria. In order to investigate the function of RNase E in the model cyanobacterium Synechocystis sp. PCC 6803, we engineered a temperature-sensitive RNase E mutant by introducing two site-specific mutations, I65F and the spontaneously occurred V94A. This enabled us to perform RNA-seq after the transient inactivation of RNase E by a temperature shift (TIER-seq) and to map 1472 RNase-E-dependent cleavage sites. We inferred a dominating cleavage signature consisting of an adenine at the −3 and a uridine at the +2 position within a single-stranded segment of the RNA. The data identified mRNAs likely regulated jointly by RNase E and an sRNA and potential 3′ end-derived sRNAs. Our findings substantiate the pivotal role of RNase E in post-transcriptional regulation and suggest the redundant or concerted action of RNase E and RNase J in cyanobacteria.

Funder

Deutsche Forschungsgemeinschaft

Baden-Wuerttemberg Ministry of Science, Research and Art

University of Freiburg

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3