Affiliation:
1. Horticultural Sciences Department, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611-0690, USA
Abstract
Abstract
Functional and architectural diversification of transcription factor families has played a central role in the independent evolution of complex development in plants and animals. Here, we investigate the role of architectural constraints on evolution of B3 DNA binding domains that regulate plant embryogenesis. B3 domains of ABI3, FUS3, LEC2 and VAL1 proteins recognize the same cis-element. Complex architectures of ABI3 and VAL1 integrate cis-element recognition with other signals, whereas LEC2 and FUS3 have reduced architectures conducive to roles as pioneer activators. In yeast and plant in vivo assays, B3 domain functions correlate with architectural complexity of the parent transcription factor rather than phylogenetic relatedness. In a complex architecture, attenuated ABI3-B3 and VAL1-B3 activities enable integration of cis-element recognition with hormone signaling, whereas hyper-active LEC2-B3 and FUS3-B3 over-ride hormonal control. Three clade-specific amino acid substitutions (β4-triad) implicated in interactions with the DNA backbone account for divergence of LEC2-B3 and ABI3-B3. We find a striking correlation between differences in in vitro DNA binding affinity and in vivo activities of B3 domains in plants and yeast. Our results highlight the role of DNA backbone interactions that preserve DNA sequence specificity in adaptation of B3 domains to functional constraints associated with domain architecture.
Funder
National Science Foundation
United States Department of Agriculture
Publisher
Oxford University Press (OUP)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献