Structure and folding of four putative kink turns identified in structured RNA species in a test of structural prediction rules

Author:

Huang Lin12,Liao Xinli3,Li Mengxiao1,Wang Jia2,Peng Xuemei1,Wilson Timothy J2,Lilley David M J2ORCID

Affiliation:

1. Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China

2. Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dow Street, Dundee DD1 5EH, UK

3. Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China

Abstract

Abstract k-Turns are widespread key architectural elements that occur in many classes of RNA molecules. We have shown previously that their folding properties (whether or not they fold into their tightly kinked structure on addition of metal ions) and conformation depend on their local sequence, and we have elucidated a series of rules for prediction of these properties from sequence. In this work, we have expanded the rules for prediction of folding properties, and then applied the full set to predict the folding and conformation of four probable k-turns we have identified amongst 224 structured RNA species found in bacterial intergenenic regions by the Breaker lab (1). We have analyzed the ion-dependence of folding of the four k-turns using fluorescence resonance energy transfer, and determined the conformation of two of them using X-ray crystallography. We find that the experimental data fully conform to both the predicted folding and conformational properties. We conclude that our folding rules are robust, and can be applied to new k-turns of unknown characteristics with confidence.

Funder

Cancer Research UK

Guangdong Science and Technology Department

Publisher

Oxford University Press (OUP)

Subject

Genetics

Reference37 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3