Affiliation:
1. State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
2. Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
3. RNA Institute, Wuhan University, Wuhan 430072, China
4. Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China
Abstract
Abstract
Virus infections are huge threats to living organisms and cause many diseases, such as COVID-19 caused by SARS-CoV-2, which has led to millions of deaths. To develop effective strategies to control viral infection, we need to understand its molecular events in host cells. Virus related functional genomic datasets are growing rapidly, however, an integrative platform for systematically investigating host responses to viruses is missing. Here, we developed a user-friendly multi-omics portal of viral infection named as MVIP (https://mvip.whu.edu.cn/). We manually collected available high-throughput sequencing data under viral infection, and unified their detailed metadata including virus, host species, infection time, assay, and target, etc. We processed multi-layered omics data of more than 4900 viral infected samples from 77 viruses and 33 host species with standard pipelines, including RNA-seq, ChIP-seq, and CLIP-seq, etc. In addition, we integrated these genome-wide signals into customized genome browsers, and developed multiple dynamic charts to exhibit the information, such as time-course dynamic and differential gene expression profiles, alternative splicing changes and enriched GO/KEGG terms. Furthermore, we implemented several tools for efficiently mining the virus-host interactions by virus, host and genes. MVIP would help users to retrieve large-scale functional information and promote the understanding of virus-host interactions.
Funder
National Natural Science Foundation of China
Hubei Provincial Natural Science Foundation
National Key Research and Development Program of China
Fundamental Research Funds for the Central Universities
Publisher
Oxford University Press (OUP)
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献