SynLeGG: analysis and visualization of multiomics data for discovery of cancer ‘Achilles Heels’ and gene function relationships

Author:

Wappett Mark12,Harris Adam1,Lubbock Alexander L R3,Lobb Ian2,McDade Simon1ORCID,Overton Ian M1ORCID

Affiliation:

1. Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, UK

2. Drug Discovery, Almac Discovery Ltd, Belfast BT9 7AE, UK

3. Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA

Abstract

Abstract Achilles’ heel relationships arise when the status of one gene exposes a cell's vulnerability to perturbation of a second gene, such as chemical inhibition, providing therapeutic opportunities for precision oncology. SynLeGG (www.overton-lab.uk/synlegg) identifies and visualizes mutually exclusive loss signatures in ‘omics data to enable discovery of genetic dependency relationships (GDRs) across 783 cancer cell lines and 30 tissues. While there is significant focus on genetic approaches, transcriptome data has advantages for investigation of GDRs and remains relatively underexplored. SynLeGG depends upon the MultiSEp algorithm for unsupervised assignment of cell lines into gene expression clusters, which provide the basis for analysis of CRISPR scores and mutational status in order to propose candidate GDRs. Benchmarking against SynLethDB demonstrates favourable performance for MultiSEp against competing approaches, finding significantly higher area under the Receiver Operator Characteristic curve and between 2.8-fold to 8.5-fold greater coverage. In addition to pan-cancer analysis, SynLeGG offers investigation of tissue-specific GDRs and recovers established relationships, including synthetic lethality for SMARCA2 with SMARCA4. Proteomics, Gene Ontology, protein-protein interactions and paralogue information are provided to assist interpretation and candidate drug target prioritization. SynLeGG predictions are significantly enriched in dependencies validated by a recently published CRISPR screen.

Funder

Almac Discovery

Royal Society of Edinburgh

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3