Genetic screen for suppression of transcriptional interference reveals fission yeast 14–3–3 protein Rad24 as an antagonist of precocious Pol2 transcription termination

Author:

Garg Angad1ORCID,Shuman Stewart1ORCID,Schwer Beate2

Affiliation:

1. Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA

2. Dept. of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA

Abstract

Abstract Expression of fission yeast Pho1 acid phosphatase is repressed under phosphate-replete conditions by transcription of an upstream prt lncRNA that interferes with the pho1 mRNA promoter. lncRNA control of pho1 mRNA synthesis is influenced by inositol pyrophosphate (IPP) kinase Asp1, deletion of which results in pho1 hyper-repression. A forward genetic screen for ADS (Asp1 Deletion Suppressor) mutations identified the 14–3–3 protein Rad24 as a governor of phosphate homeostasis. Production of full-length interfering prt lncRNA was squelched in rad24Δ cells, concomitant with increased production of pho1 mRNA and increased Pho1 activity, while shorter precociously terminated non-interfering prt transcripts persisted. Epistasis analysis showed that pho1 de-repression by rad24Δ depends on: (i) 3′-processing and transcription termination factors CPF, Pin1, and Rhn1; and (ii) Threonine-4 of the Pol2 CTD. Combining rad24Δ with the IPP pyrophosphatase-dead asp1-H397A allele caused a severe synthetic growth defect that was ameliorated by loss-of-function mutations in CPF, Pin1, and Rhn1, and by CTD phospho-site mutations T4A and Y1F. Rad24 function in repressing pho1 was effaced by mutation of its phosphate-binding pocket. Our findings instate a new role for a 14–3–3 protein as an antagonist of precocious RNA 3′-processing/termination.

Funder

NIH

NCI Cancer Center

Cycle for Survival, and the Marie-Josée and Henry R. Kravis Center for Molecular Oncology

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3