CyanoOmicsDB: an integrated omics database for functional genomic analysis of cyanobacteria

Author:

Zhou Peng1,Wang Li1,Liu Hai1,Li Chunyan1,Li Zhimin12,Wang Jinxiang1,Tan Xiaoming1ORCID

Affiliation:

1. State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan430062, China

2. College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang330045, China

Abstract

Abstract With their photosynthetic ability and established genetic modification systems, cyanobacteria are essential for fundamental and biotechnological research. Till now, hundreds of cyanobacterial genomes have been sequenced, and transcriptomic analysis has been frequently applied in the functional genomics of cyanobacteria. However, the massive omics data have not been extensively mined and integrated. Here, we describe CyanoOmicsDB (http://www.cyanoomics.cn/), a database aiming to provide comprehensive functional information for each cyanobacterial gene. CyanoOmicsDB consists of 8 335 261 entries of cyanobacterial genes from 928 genomes. It provides multiple gene identifiers, visualized genomic location, and DNA sequences for each gene entry. For protein-encoding genes, CyanoOmicsDB can provide predicted gene function, amino acid sequences, homologs, protein-domain super-families, and accession numbers for various public protein function databases. CyanoOmicsDB integrates both transcriptional and translational profiles of Synechocystis sp. PCC 6803 under various environmental culture coditions and genetic backgrounds. Moreover, CyanoOmicsDB includes 23 689 gene transcriptional start sites, 94 644 identified peptides, and 16 778 post-translation modification sites obtained from transcriptomes or proteomes of several model cyanobacteria. Compared with other existing cyanobacterial databases, CyanoOmicsDB comprises more datasets and more comprehensive functional information. CyanoOmicsDB will provide researchers in this field with a convenient way to retrieve functional information on cyanobacterial genes.

Funder

National Natural Science Foundation of China

State Key Laboratory of Biocatalysis and Enzyme Engineering

Chinese Academy of Sciences

State Key Laboratory of Freshwater Ecology and Biotechnology

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3