Comparative Prey Spectra Analyses on the Endangered Aquatic Carnivorous Waterwheel Plant (Aldrovanda vesiculosa, Droseraceae) at Several Naturalized Microsites in the Czech Republic and Germany

Author:

Horstmann M1,Heier L1,Kruppert S12,Weiss L C1,Tollrian R1,Adamec L3,Westermeier A45,Speck T456,Poppinga S46ORCID

Affiliation:

1. Department of Animal Ecology, Evolution and Biodiversity, Ruhr-University Bochum, Universitätsstraße 150, D-44780, Bochum, Germany

2. Friday Harbor Laboratories, University of Washington, 620 University Road, WA 98250, USA

3. Institute of Botany of the Czech Academy of Sciences, Dukelská 135, CZ-379 82, Třeboň, Czech Republic

4. Plant Biomechanics Group, Botanic Garden, University of Freiburg, Schänzlestraße 1, D-79104, Freiburg im Breisgau, Germany

5. Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Koehler-Allee 105, D-79110, Freiburg im Breisgau, Germany

6. Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, D-79104 Freiburg im Breisgau, Germany

Abstract

Synopsis The critically endangered carnivorous waterwheel plant (Aldrovanda vesiculosa, Droseraceae) possesses underwater snap traps for capturing small aquatic animals, but knowledge on the exact prey species is limited. Such information would be essential for continuing ecological research, drawing conclusions regarding trapping efficiency and trap evolution, and eventually, for conservation. Therefore, we performed comparative trap size measurements and snapshot prey analyses at seven Czech and one German naturalized microsites on plants originating from at least two different populations. One Czech site was sampled twice during 2017. We recorded seven main prey taxonomic groups, that is, Cladocera, Copepoda, Ostracoda, Ephemeroptera, Nematocera, Hydrachnidia, and Pulmonata. In total, we recorded 43 different prey taxa in 445 prey-filled traps, containing in sum 461 prey items. With one exception, prey spectra did not correlate with site conditions (e.g. water depth) or trap size. Our data indicate that A. vesiculosa shows no prey specificity but catches opportunistically, independent of prey species, prey mobility mode (swimming or substrate-bound), and speed of movement. Even in cases where the prey size exceeded trap size, successful capture was accomplished by clamping the animal between the traps’ lobes. As we found a wide prey range that was attracted, it appears unlikely that the capture is enhanced by specialized chemical- or mimicry-based attraction mechanisms. However, for animals seeking shelter, a place to rest, or a substrate to graze on, A. vesiculosa may indirectly attract prey organisms in the vicinity, whereas other prey capture events (like that of comparably large notonectids) may also be purely coincidental.

Funder

Studienstiftung des deutschen Volkes

German Research Foundation

Czech long-term research development

Publisher

Oxford University Press (OUP)

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3