Identification of human uridine diphosphate-glucuronosyltransferase isoforms responsible for the glucuronidation of 10,11-dihydro-10-hydroxy-carbazepine

Author:

Huang Kai1ORCID,Que Linling1,Ding Ying1,Chu Nannan1,Qian Zhenzhong1,Qin Wei1,Chen Yuanxing1,Zhang Jisheng1,He Qing

Affiliation:

1. Drug Clinical Trial Institution, Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China

Abstract

Abstract Objectives To determine the kinetics of the formation of 10,11-dihydro-10-hydroxy-carbazepine (MHD)-O-glucuronide in human liver microsomes (HLMs), human intestine microsomes (HIMs), human kidney microsomes (HKMs) and recombinant human UDP-glucuronosyltransferase (UGTs), and identify the primary UGT isoforms catalyzing the glucuronidation of MHD. Methods The kinetics of the glucuronidation of MHD was determined in HLMs, HIMs as well as HKMs. Screening assays with 13 recombinant human UGTs, inhibition studies and correlation analysis were performed to identify the main UGTs involved in the glucuronidation of MHD. Key findings MHD-O-glucuronide was formed in HLMs, HIMs as well as HKMs, HLMs showed the highest intrinsic clearance of MHD. Among 13 recombinant human UGTs, UGT2B7 and UGT1A9 were identified to be the principal UGT isoforms mediating the glucuronidation of MHD, while UGT1A4 played a partial role. In addition, inhibition studies and correlation analysis further confirmed that UGT2B7 and UGT1A9 participated in the formation of MHD-O-glucuronide. Conclusions MHD could be metabolized by UGTs in the liver, intestine and kidney, and the hepatic glucuronidation was the critical metabolic pathway. UGT2B7 and UGT1A9 were the primary UGT isoforms mediating the formation of MHD-O-glucuronide in the liver.

Funder

Foundation of Wuxi Young Medical Talent

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3