Glucosamine attenuates drug resistance in Mitoxantrone-resistance breast cancer cells

Author:

Valinezhad Sani Fatemeh12,Palizban Abbasali1,Mosaffa Fatemeh34,Jamialahmadi Khadijeh35ORCID

Affiliation:

1. Department of Clinical Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran

2. Department of Laboratory Sciences, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad,Iran

3. Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad,Iran

4. Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad,Iran

5. Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad,Iran

Abstract

Abstract Objectives This study was aimed at investigating the cytotoxicity and multi-drug resistance (MDR) reversal effect of Glucosamine (GlcN) on resistant BCRP-overexpressing breast cancer MCF-7/MX cells. Methods After confirming the overexpression of BCRP, the cytotoxicity and MDR reversing potential of GlcN on MCF-7/MX mitoxantrone-resistant and MCF-7 sensitive breast cancer cells were assessed via MTT assay. The effects of GlcN on mitoxantrone accumulation were analyzed through flow cytometry. Finally, the expression of BCRP and Epithelial-Mesenchymal Transition (EMT)-related markers following the exposure to GlcN were assessed by real-time RT-PCR. Key findings This study showed that glucosamine had an inhibitory effect on the proliferation of human breast cancer cells. The respective IC50 values for MCF-7/MX cells following exposure to mitoxantrone (MX) in the presence of GlcN (0, 0.5 and 1 mm) for 72 h were 3.61 ± 0.21, 0.598 ± 0.041 and 0.284 ± 0.016 μm, respectively. Furthermore, GlcN reduced the expression of BCRP mRNA without any significant effect on EMT-related markers in breast cancer cells. Conclusions These results proposed that glucosamine as a natural sugar could down regulate the BCRP expression and increased MX cytotoxicity in breast cancer cells.

Funder

Mashhad University of Medical Sciences

Isfahan University of Medical Sciences

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3