Light tolerance of extended spectrum β-lactamase producing Escherichia coli strains after repetitive exposure to far-UVC and blue LED light

Author:

Gardner Amanda1ORCID,Soni Aswathi1,Cookson Adrian12,Brightwell Gale13

Affiliation:

1. Food Systems Integrity Team, AgResearch Ltd., Hopkirk Research Institute, Cnr University Ave and Library Road, Massey University , Palmerston North 4442 , New Zealand

2. School of Veterinary Medicine, Massey University Manawatu (Turitea) , Tennent Drive, Palmerston North 4474 , New Zealand

3. New Zealand Food Safety Science and Research Centre, Massey University Manawatu (Turitea) , Tennent Drive, Palmerston North 4474 , New Zealand

Abstract

Abstract Aims The aim of this study was to investigate dual far-UVC (Ultraviolet-C) (222 nm) and blue LED (Light Emitting Diode) (405 nm) light on the inactivation of extended spectrum β-lactamase-producing Escherichia coli (ESBL-Ec) and to determine if repetitive exposure to long pulses of light resulted in changes to light tolerance, and antibiotic susceptibility. Methods and results Antimicrobial efficiency of dual and individual light wavelengths and development of light tolerance in E. coli was evaluated through a spread plate method after exposure to light at 25 cm. Dual light exposure for 30 min resulted in a 5–6 log10 CFU mL−1 reduction in two ESBL-Ec and two antibiotic-sensitive control E. coli strains. The overall inhibition achieved by dual light treatment was always greater than the combined reductions (log10 CFU) observed from exposure to individual light wavelengths (combined 222–405 nm), indicating a synergistic relationship between blue LED and far-UVC light when used together. Repetitive long pulses of dual and individual far-UVC light exposure resulted in light tolerance in two ESBL-Ec strains but not the antibiotic-sensitive E. coli strains. Subsequent passages of repetitive light-treated ESBL-Ec strains continued to exhibit light tolerance. Antibiotic susceptibility was determined through a standard disk diffusion method. No changes were observed in the antibiotic susceptibility profiles for any of the four strains after exposure to either dual or individual wavelengths. Conclusions Dual light exposure was effective in the disinfection of ESBL-Ec in solution; however, antibiotic-resistant E. coli were able to develop light tolerance after repetitive exposure to light.

Funder

Ministry of Business, Innovation and Employment

Strategic Science Investment Fund

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,General Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3