Metallic and polymeric green nanoplatforms in oncology

Author:

Jadhav Mrunal1,Prabhu Arati1

Affiliation:

1. Department of Pharmaceutical Chemistry & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy , Mumbai, 400056 , India

Abstract

AbstractChemotherapy, the cornerstone of cancer treatment, although invaluable, is plagued with unbearable and occasionally life-threatening side effects due to its inability to discriminate between tumorous and healthy cells. Anticancer nanomedicines have gained prominence due to their site-specific delivery of chemotherapeutic agents. In comparison to traditional chemical and physical procedures, which add to the chemical burden of an already ailing body, biosynthesis of nanomaterials by plants and microorganisms has evolved as safer ‘green’ nano-manufacturing technology. While nanomedicines from plant extracts have been exhaustively researched, the use of microbes as potential nano factories for the production of metal nanoparticles has recently piqued interest. Many bacteria develop defence mechanisms to detoxify hazardous metal ions, which results in formation of nano scaled metals that can be used for numerous therapeutic applications. The intrinsic variability of microbiological systems, however, poses its own set of challenges, necessitating more stringent standardization protocols in order to create nanomaterials with reproducible attributes. In this paper, we review the emerging trends in the green biosynthesis of nanomaterials and their potential applicability in cancer therapeutics. We probe the microbial biosynthetic mechanistic pathways and the efforts taken to control the physicochemical characteristics of nanoparticles. The applications of metallic nanoparticles obtained from microbes as well as polymeric systems obtained from bacteria, fungi and seaweed in oncology are described in detail. The development of these nanomaterials as next-generation green anticancer drugs may result in a revolution in cancer therapeutics.

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,General Medicine,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3