Raman spectroscopy as an alternative rapid microbial bioburden test method for continuous, automated detection of contamination in biopharmaceutical drug substance manufacturing

Author:

Masucci Erin M1,Hauschild James E2,Gisler Helena M1,Lester Erin M1,Balss Karin M1ORCID

Affiliation:

1. Emerging Technologies, Manufacturing Science and Technology Janssen Pharmaceuticals Inc. , Welsh and McKean Roads, Spring House, PA 19477 , USA

2. Microbiological Quality and Sterility Assurance Johnson & Johnson Services, Inc. , Raritan, NJ 08869 , USA

Abstract

Abstract Aims To investigate an in-line Raman method capable of detecting accidental microbial contamination in pharmaceutical vessels, such as bioreactors producing monoclonal antibodies via cell culture. Methods and results The Raman method consists of a multivariate model built from Raman spectra collected in-line during reduced-scale bioreactor batches producing a monoclonal antibody, as well as a reduced-scale process with intentional spiking of representative compendial method microorganisms (n = 4). The orthogonal partial least squares regression discriminant analysis model (OPLS-DA) area under the curve (AUC), specificity and sensitivity were 0.96, 0.99, and 0.95, respectively. Furthermore, the model successfully detected contamination in an accidentally contaminated manufacturing-scale batch. In all cases, the time to detection (TTD) for Raman was superior compared to offline, traditional microbiological culturing. Conclusions The Raman OPLS-DA method met acceptance criteria for equivalent decision making to be considered a viable alternative to the compendial method for in-process bioburden testing. The in-line method is automated, non-destructive, and provides a continuous assessment of bioburden compared to an offline compendial method, which is manual, results in loss of product, and in practice is only collected once daily and requires 3–5 days for enumeration.

Funder

Janssen Pharmaceuticals

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3