Approaches for introducing large DNA molecules into bacterial cells

Author:

Nishida Hiromi1ORCID

Affiliation:

1. Department of Food and Life Sciences, Toyo University , 1-1-1, Izumino, Itakura-machi, Ora-gun, Gunma 374-0193 , Japan

Abstract

AbstractEngineering of the bacterial genome plays a key role in systems biology and synthetic biology. Genetic engineering of the bacterial genome involves the design and synthesis of large DNA molecules. However, functional studies of the designed and synthesized large DNA molecules are lagging. Methods for the transformation of large DNA molecules of bacterial chromosome size into bacterial cells through a single operation have not yet been established. Two major methods can be used for transferring large DNA molecules of bacterial chromosome size into bacterial cells: transformation mediated by liposomes or by microinjection. In both methods, cell wall (peptidoglycan layer)-deficient cells (l-form, protoplast, or spheroplast) should be used as the bacterial host cells. We succeeded in transferring a heterologous bacterial genome into an enlarged bacterial protoplast using a micromanipulator. This method for transferring large DNA molecules into bacterial cells through a single operation will contribute to both fundamental and applied research in microbial genome science.

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,General Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3