Discovery and characterization of a novel PKD-Fn3 domains containing GH44 endoglucanase from a Tibetan metagenomic library

Author:

Lyu Yunbin1,Luo Hao1,Chai Shumao1,Zhang Ying1,Fan Xinyu1,Wang Shaochen1,Feng Zhiyang1

Affiliation:

1. College of Food Science and Technology, Nanjing Agricultural University , 1 Weigang, Nanjing 210095 , China

Abstract

Abstract Aims To explore novel microbial endoglucanases with unique properties derived from extreme environments by using metagenomics approach. Methods and results A Tibetan soil metagenomic library was applied for screening cellulase-active clones by function-based metagenomics. The candidate genes in the active clones were identified through bioinformatic analyses and heterologously expressed using an Escherichia coli system. The recombinant endoglucanases were purified and characterized using enzyme assays to determine their bioactivities, stabilities, substrate specificities, and other enzymatic properties. A novel endoglucanase gene Zfeg1907 was identified, which consisted of a glycoside hydrolase family 44 (GH44) catalytic domain along with a polycystic kidney disease (PKD) domain and a fibronectin type Ⅲ (Fn3) domain at the C terminal. Recombinant enzyme ZFEG1907 and its truncated mutant ZFEG1907t (ΔPKDΔFn3) were successfully expressed and purified. The two recombinants exhibited catalytic activities toward carboxymethyl cellulose, konjac glucomannan (KGM), and lichenan. Both enzymes had an optimal temperature of 50°C and an optimal pH value of 5.0. The catalytic activities of both recombinant enzymes were promoted by adding Zn2+ and Ca2+ at the final concentration of 10 mM. The Km value of ZFEG1907 was lower, while the kcat/Km value of ZFEG1907 was higher than those of of ZFEG1907t when using carboxymethyl cellulose, KGM, and lichenan as substrates. Structure prediction of two recombinants revealed that PKD-Fn3 domains consisted of a flexible linker and formed a β-sandwich structure. Conclusions A novel endoglucanase ZFEG1907 contained a GH44 catalytic domain and a PKD-Fn3 domain was characterized. The PKD-Fn3 domains were not indispensable for the activity but contributed to the enzyme binding of the polysaccharide substrates as a carbohydrate-binding module (CBM).

Funder

Fundamental Research Funds for the Central Universities

State Key Laboratory of Microbial Metabolism

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,General Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3