Carrier proteins boost expression of PR-39-derived peptide in Pichia pastoris

Author:

Liu Minzhi12,Xiao Yao3,Yang Yan12,Zhou Sihan2,Shen Xin2,Zhang Youxi3,Wang Wei12

Affiliation:

1. State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing 100050 , China

2. Key Laboratory of Biosynthesis of Natural Products of National Health Commission of the People's Republic of China, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing 100050 , China

3. Department of Pharmacy, The Fourth Affiliated Hospital of China Medical University , Shenyang 100032 , China

Abstract

Abstract Aims Multidrug resistance presents difficulties in preventing and treating bacterial infections. Proline-rich antimicrobial peptides (PrAMPs) inhibit bacterial growth by affecting the intracellular targets rather than by permeabilizing the membrane. The aim of this study was to develop a yeast-based fusion carrier system using calmodulin (CaM) and xylanase (XynCDBFV) as two carriers to express the model PrAMP PR-39-derived peptide (PR-39-DP) in Pichia pastoris. Methods and results Fusion protein secreted into the culture supernatant was purified in a one-step on-column digestion using human rhinovirus 3C protease, obtaining the target peptide PR-39-DP. The growth curves of Escherichia coli were monitored by recording the OD600 values of the bacteria. The antibacterial activity of PR-39-DP was evaluated in killing assays performed on E. coli. The yield of PR-39-DP was 1.0–1.2 mg l−1 in the CaM fusion carrier system, approximately three times that of the XynCDBFV fusion carrier system. The minimal inhibitory concentration of PR-39-DP was ∼10.5 µg ml−1. Conclusions CaM and XynCDBFV provide increased stability and promote the expression and secretion of active PR-39-DP.

Funder

National Natural Science Foundation of China

Chinese Academy of Medical Sciences Initiative for Innovative Medicine

Peking Union Medical College

UK Youth Fund

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,General Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3