Strain specific Starmerella bacillaris and Saccharomyces cerevisiae interactions in mixed fermentations

Author:

Englezos Vasileios1,Di Gianvito Paola1,Serafino Gabriele1ORCID,Giacosa Simone1ORCID,Cocolin Luca1,Rantsiou Kalliopi1

Affiliation:

1. Dipartimento di Scienze Agrarie, Università degli Studi di Torino, Forestali e Alimentari , Largo Braccini 2, 10095 Grugliasco , Italy

Abstract

Abstract Aims Yeast interactions have a key role in the definition of the chemical profile of the wines. For this reason, winemakers are increasingly interested in mixed fermentations, employing Saccharomyces cerevisiae and non-Saccharomyces strains. However, the outcome of mixed fermentations is often contradictory because there is a great variability among strains within species. Previously, it was demonstrated that the loss of culturability of Starmerella bacillaris in mixed fermentations with S. cerevisiae was due to the physical contact between cells. Therefore, to further explore previous observations, the interaction mechanisms among different strains of Starm. bacillaris and S. cerevisiae during mixed fermentations were investigated. Methods and results Fermentations were conducted under conditions that allow physical contact between cells (flasks) but also using a double-compartment fermentation system in which cells of both species were kept separate. The role of competition for nutrients and antimicrobial compounds production on yeast–yeast interaction mechanisms was also investigated. Three Starm. bacillaris and three S. cerevisiae strains were used to investigate if interaction mechanisms are modulated in a strain-specific way. Both species populations were affected by physical contact, particularly Starm. bacillaris that lost its culturability during fermentation. In addition, loss of culturability of Starm. bacillaris strains was observed earlier in flasks than in the double-compartment system. The phenomena observed occurred in a strain couple-dependent way. Starm. bacillaris disappearance seemed to be independent of nutrient depletion or the presence of inhibitory compounds (which were not measured in this study). Conclusion Overall, the results of the present study reveal that cell-to-cell contact plays a role in the early death of non-Saccharomyces but the extent to which it is observed depends greatly on the Starm. bacillaris/S. cerevisiae strains tested.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3