Affiliation:
1. School of Life Sciences and Medicine, Shandong University of Technology , Zibo 250049 , China
2. State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University , Shanghai 200240 , China
Abstract
AbstractOrganosulfur compounds in fossil fuels have been a major concern in the process of achieving zero-sulfur fuel production. Biodesulfurization (BDS) is an environmentally friendly strategy for the removal of refractory organosulfur compounds from fossil fuels. Even though researchers are committed to engineering the desulfurization-specific pathway for improving BDS efficiency, the industrial application of BDS is still difficult. Recently, the sulfur metabolism of Rhodococcus has begun to attract attention due to its influences on the BDS process. In this review, we introduce the sulfur metabolism in Rhodococcus, including sulfur absorption, reduction, and assimilation; and summarize desulfurization in Rhodococcus, including the desulfurization mechanism, the regulation mechanism of the 4S pathway, and the strategies of optimizing the 4S pathway to improve BDS efficiency. In particular, the influence of sulfur metabolism on BDS efficiency is discussed. In addition, we consider the latest genetic engineering strategies in Rhodococcus. An improved understanding of the relationship between sulfur metabolism and desulfurization will enable the industrial application of BDS.
Funder
National Natural Science Foundation of China
State Key Laboratory of Microbial Metabolism
Publisher
Oxford University Press (OUP)
Subject
Applied Microbiology and Biotechnology,General Medicine,Biotechnology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献