Potential contributions of keystone species to intestinal ecosystem in patients with Crohn's disease

Author:

Peng Yuzhu1,Zhao Qi2,Chen Shuijiao3,Li Zhenyu1,An Di1,Zhang Xian1

Affiliation:

1. Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University , Changsha 410006 , China

2. Department of Respiratory and Critical Care Medicine, Tangdu Hospital of Air Force Military Medical University , Xi'an 710038 , China

3. Department of Gastroenterology, Xiangya Hospital, Central South University , Changsha 410008 , China

Abstract

Abstract Aims Ravelling the central but poorly understood issue that potential contributions of keystone species to intestinal ecosystem functioning of patients with certain life-altering diseases including Crohn's disease (CD). Methods and results In this study, a combination of 16S rRNA gene amplicon sequencing and amplicon-oriented metagenomic profiling was applied to gain insights into the shifts in bacterial community composition at different stages of CD course, and explore the functional roles of identified keystone species in intestinal microecosystem. Our results showed significant alterations in structure and composition of gut microbiota between CD patients and healthy control (HC) (P < 0.05), but was no difference at active and remission stages. Whole-community-based comprehensive analyses were employed to identify the differential species such as Escherichia coli, Anaerostipes hadrus, and Eubacterium hallii in CD patients, with healthy populations as the control. Metagenome-wide functional analyses further revealed that the relative abundance of specialized metabolism-related genes such as cynS, frdB, serA, and gltB from these bacterial species in CD group was significantly different (P < 0.05) from that in HC, and highlighted the potential roles of the keystone species in regulating the accumulation of important metabolites such as succinate, formate, ammonia, L-glutamate, and L-serine, which might have an effect on homeostasis of intestinal ecosystem. Conclusions The findings identify several potential keystone species that may influence the intestinal microecosystem functioning of CD patients and provide some reference for future CD treatment.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities of Central South University

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3