Study of coaxial-dual-gap dielectric barrier discharge based on capillary: discharge characteristics and Escherichia coli decontamination

Author:

Zhu Di12,Liu Dongping1,Zhao Yao13,Li Haiyu1,Wang Zhishang1,Lu Na1

Affiliation:

1. School of Electrical Engineering, Dalian University of Technology , Dalian 116024 , China

2. State Grid Heilongjiang Electric Power Supply Company Limited Economic Research Institute , Harbin 150036 , China

3. School of Physics, Dalian University of Technology , Dalian 116024 , China

Abstract

Abstract Aims The medical capillary catheters occupy a high proportion of medical diagnosis, monitoring, and treatment devices, and will cause serious cross-infection without being disinfected adequately. This paper presents a new plasma structure for efficient inactivation of harmful microorganisms in medical capillaries. Methods and results An innovative coaxial-dual-gap dielectric barrier discharge reactor powered by nanosecond-pulsed power supply was designed for disinfection of Escherichia coli (E. coli) inside and outside medical capillary catheters in this work. Atmospheric helium plasma (AHP) and atmospheric air plasma (AAP) were successfully obtained inside and outside capillary (0.6 mm inner diameter and 1.0 mm outer diameter), respectively. The electrical and optical characteristics of AHP and AAP were investigated. As the threshold of applied voltage amplitude (Uamp) was <7.0 kV, only one helium glow discharge was generated inside the capillary at the rising and falling stages of pulse voltage. As the Uamp exceeded the threshold, two helium glow discharges were generated that further caused generation of air discharge. Under the Uamp of 9.0 kV, the production of AHP lowered the breakdown voltage in air gap, resulting in the formation of high-volume and uniform AAP, which was conducive to the realization of full inactivation. The inactivation rates of E. coli reached 98.13% and 99.99% by 2 min AHP and 0.5 min AAP treatment, respectively. Conclusions The electrical stress of AHP and the reactive oxygen and nitrogen species produced by AAP were contributed to the inactivation of E. coli. The results of SEM (Scanning Electron Microscope) show that plasma treatment can destroy the cellular structure of E. coli.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,General Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3