Antifungal activity of Klebsiella grimontii DR11 against Fusarium oxysporum causing soybean root rot

Author:

Wang Shengyi1,Zheng Lining1,Gao Ao1,Xiao Yufeng1,Han Zhe1,Pan Hongyu2,Zhang Hao1

Affiliation:

1. College of Plant Protection, Jilin Agricultural University , Changchun 130118 , P. R. China

2. College of Plant Sciences, Jilin University , Changchun 130062 , P. R. China

Abstract

Abstract Aims Soybean root rot, caused by Fusarium oxysporum, leads to significant economic and financial losses to the soybean processing industry globally. In the study, we aimed to explore a biocontrol agent to combat F. oxysporum infection in soybean. Methods and Results From soybean rhizosphere soil, 48 strains were isolated. Among them, the strain DR11 exhibited the highest inhibition rate of 72.27%. Morphological, physiological, biochemical, and 16S rDNA identification revealed that the strain DR11 was Klebsiella grimontii DR11. Strain DR11 could inhibit the growth of F. oxysporum and spore formation and alter the mycelial morphology. At 5.0 × 106 CFU mL−1, pH 7, and 30°C, it exhibited the highest inhibitory rate (72.27%). Moreover, it could decrease the activity of cell-wall-degrading enzymes of F. oxysporum. Simultaneously, the activities of defense-related enzymes and content of malondialdehyde in soybean plants were increased after treatment with strain DR11. In addition, strain DR11 could form aggregates to form biofilm and adsorb on the surface of soybean roots. It inhibited F. oxysporum growth on soybean seedlings, with an inhibitory effect of 62.71%. Conclusion Klebsiella grimontii DR11 had a strong inhibitory effect on F. oxysporum and could be used as a biocontrol agent to combat F. oxysporum infection in soybean.

Funder

National Key Research and Development Program of China

Jilin Provincial Science and Technology Development Plan

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,General Medicine,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3