Affiliation:
1. College of Food Science, Sichuan Agricultural University , Ya’an, Sichuan 625014 , People’s Republic of China
2. College of Resources, Sichuan Agricultural University , Chengdu, Sichuan 611130 , People’s Republic of China
Abstract
AbstractAimsBeads containing heat-inactivated bacterial biomaterial (BBBs) were prepared for removal of cypermethrin (CPM) and the conditions for this removal were evaluated and optimized via single-factor coupled orthogonal experiments based on five factors. The adsorption characteristics of BBBs and the binding mechanism were then explored.Methods and ResultsResults showed that the adsorption rate of CPM could reach 98% with beads prepared under optimized conditions: equal volumes of Lactobacillus cell debris derived from 1×1011 CFU; 2% hydroxypropyl-β-cyclodextrin and 2.5% activated carbon concentration, were mixed to give mixture TM, and this and SA, was mixed 1:4 with sodium alginate (SA) and beads were prepared using a 26-Gauge needle). The best adsorption conditions were initial CPM concentration of 10 mg l-1, incubation time of 24 h, and rotational speed of 180 rpm. BBBs have a well-formed structure and abundant surface functional groups, such as –COOH, –OH, –NH, –CH, –CO, –C=C. The adsorption process conformed to pseudo-second-order kinetic, and it was also a Freundlich monolayer adsorption, and the calculated maximum adsorption capacity was 9.69 mg g-1 under optimized conditions.ConclusionsBBBs showed the highest CPM removal capacity and a good tolerance ability.Significance and Impact of the StudyOur results provided a theoretical foundation for developing an adsorbent with heat-inactivated Lactobacillus plantarum (L. plantarum) RS60 for removing CPM in wastewater or drinks.
Funder
National Natural Science Foundation of China
Publisher
Oxford University Press (OUP)
Subject
Applied Microbiology and Biotechnology,General Medicine,Biotechnology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献