Characterization and optimization of bioluminescent bacterial cells immobilization process in calcium alginate hydrogel tablets

Author:

Harpaz Dorin12,Zoabi Kosai12,Eltzov Evgeni1ORCID

Affiliation:

1. Department of Postharvest Science, Institute of Postharvest and Food Science, Volcani Center, Agricultural Research Organization , Rishon LeZion 7505101 , Israel

2. Faculty of Agriculture, Food and Environment, Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem , Rehovot 76100 , Israel

Abstract

Abstract Aims Whole-cell biosensors are increasingly utilized in various applications. These platforms integrate cells with a signal measurement device. One of the main challenges in the development of such platforms is the immobilization matrix that is used to keep the cells stable, which also affects the portability of the device. In this study, a portable and simple immobilization of bioluminescent bacterial cells in calcium alginate hydrogel was examined. Methods and results The effects of several physical parameters were investigated (e.g. calcium alginate solution volume, drying, incubation time, mixing procedure, bacterial concentration, and tablet location within the cylinder). An alginate solution volume of 3 ml was preferred as well as the addition of 400 μl solution after the 15 min of compressing step and before the polymerization step. Also, a stirring mixing mode is favored over vortexing due to the creation of better homogenized tablets, as well as a bacterial concentration of 0.15 OD600nm that produced a high light response while maintaining a lower variance. Lastly, the findings showed a significantly higher response [induction factor (IF)] in the tablets using the optimized immobilization protocol (IF = 8.814) than the old one (IF = 1.979). Conclusions To conclude, bacterial cells immobilization in calcium alginate tablets provides improved sensitivity and storability.

Funder

Ministry of Agriculture and Rural Development

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,General Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3