The high-quality genome of Grona styracifolia uncovers the genomic mechanism of high levels of schaftoside, a promising drug candidate for treatment of COVID-19

Author:

Zeng Shaohua123ORCID,Wang Zhiqiang13,Shi Dingding13,Yu Fangqin12,Liu Ting12,Peng Ting2,Bi Guiqi4,Yan Jianbin4,Wang Ying123

Affiliation:

1. Chinese Academy of Sciences Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China National Botanical Garden, State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, , Guangzhou 510650, China

2. Gannan Normal University College of Life Sciences, , Ganzhou 341000, China

3. University of Chinese Academy of Sciences , Beijing 100049, China

4. Chinese Academy of Agricultural Sciences Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, , Shenzhen 518124, China

Abstract

Abstract Recent study has evidenced that traditional Chinese medicinal (TCM) plant-derived schaftoside shows promise as a potential drug candidate for COVID-19 treatment. However, the biosynthetic pathway of schaftoside in TCM plants remains unknown. In this study, the genome of the TCM herb Grona styracifolia (Osbeck) H.Ohashi & K.Ohashi (GSO), which is rich in schaftoside, was sequenced, and a high-quality assembly of GSO genome was obtained. Our findings revealed that GSO did not undergo recent whole genome duplication (WGD) but shared an ancestral papilionoid polyploidy event, leading to the gene expansion of chalcone synthase (CHS) and isoflavone 2′-hydroxylase (HIDH). Furthermore, GSO-specific tandem gene duplication resulted in the gene expansion of C-glucosyltransferase (CGT). Integrative analysis of the metabolome and transcriptome identified 13 CGTs and eight HIDHs involved in the biosynthetic pathway of schaftoside. Functional studies indicated that CGTs and HIDHs identified here are bona fide responsible for the biosynthesis of schaftoside in GSO, as confirmed through hairy root transgenic system and in vitro enzyme activity assay. Taken together, the ancestral papilionoid polyploidy event expanding CHSs and HIDHs, along with the GSO-specific tandem duplication of CGT, contributes, partially if not completely, to the robust biosynthesis of schaftoside in GSO. These findings provide insights into the genomic mechanisms underlying the abundant biosynthesis of schaftoside in GSO, highlighting the potential of GSO as a source of bioactive compounds for pharmaceutical development.

Funder

Guangdong Provincial Special Fund for Modern Agriculture Industry Technology Innovation Teams, China

Youth Innovation Promotion Association CAS

Guangdong Provincial Key Laboratory of Applied Botany

Key Technologies R&D Program of Guangdong Province

Key Area R&D Project of Guangdong Province

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3