Genome-wide methylation, transcriptome and characteristic metabolites reveal the balance between diosgenin and brassinosteroids in Dioscorea zingiberensis

Author:

Li Zihao1,Li Yi1,Geng Luyu1,Wang Jiachen1,Ouyang Yidan2,Li Jiaru1ORCID

Affiliation:

1. Wuhan University State Key Laboratory of Hybrid Rice, College Life Sciences, , Wuhan 430072, China

2. Huazhong Agricultural University National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, , Wuhan 430070, China

Abstract

Abstract Diosgenin (DG) is a bioactive metabolite isolated from Dioscorea species, renowned for its medicinal properties. Brassinosteroids (BRs) are a class of crucial plant steroidal hormones. Cholesterol and campesterol are important intermediates of DG and BR biosynthesis, respectively. DG and BRs are structurally similar components; however, the regulatory network and metabolic interplays have not been fully elucidated. In an effort to decode these complex networks, we conducted a comprehensive study integrating genome-wide methylation, transcriptome and characteristic metabolite data from Dioscorea zingiberensis. Leveraging these data, we were able to construct a comprehensive regulatory network linking DG and BRs. Mass spectrometry results enabled us to clarify the alterations in cholesterol, campesterol, diosgenin, and castasterone (one of the major active BRs). The DG content decreased by 27.72% at 6 h after brassinolide treatment, whereas the content increased by 85.34% at 6 h after brassinazole treatment. Moreover, we pinpointed DG/BR-related genes, such as CASs, CYP90s, and B3-ARFs, implicated in the metabolic pathways of DG and BRs. Moreover, CASs and CYP90s exhibit hypomethylation, which is closely related to their high transcription. These findings provide robust evidence for the homeostasis between DG and BRs. In conclusion, our research revealed the existence of a balance between DG and BRs in D. zingiberensis. Furthermore, our work not only provides new insights into the relationship between the two pathways but also offers a fresh perspective on the functions of secondary metabolites.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Reference75 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3