Adaptation to Extreme Environments in an Admixed Human Population from the Atacama Desert

Author:

Vicuña Lucas1,Fernandez Mario I23ORCID,Vial Cecilia3,Valdebenito Patricio4,Chaparro Eduardo4,Espinoza Karena2,Ziegler Annemarie3,Bustamante Alberto2,Eyheramendy Susana15

Affiliation:

1. Department of Statistics, Faculty of Mathematics, Pontificia Universidad Católica de Chile, Santiago, Chile

2. Department of Urology, Clínica Alemana, Santiago, Chile

3. Center for Genetics and Genomics, Faculty of Medicine, Clínica Alemana Universidad del Desarrollo, Santiago, Chile

4. Department of Urology, Hospital Regional, Antofagasta, Chile

5. Faculty of Engineering and Sciences, Universidad Adolfo Ibañez, Peñalolén, Santiago, Chile

Abstract

AbstractInorganic arsenic (As) is a toxic xenobiotic and carcinogen associated with severe health conditions. The urban population from the Atacama Desert in northern Chile was exposed to extremely high As levels (up to 600 µg/l) in drinking water between 1958 and 1971, leading to increased incidence of urinary bladder cancer (BC), skin cancer, kidney cancer, and coronary thrombosis decades later. Besides, the Andean Native-American ancestors of the Atacama population were previously exposed for millennia to elevated As levels in water (∼120 µg/l) for at least 5,000 years, suggesting adaptation to this selective pressure. Here, we performed two genome-wide selection tests—PBSn1 and an ancestry-enrichment test—in an admixed population from Atacama, to identify adaptation signatures to As exposure acquired before and after admixture with Europeans, respectively. The top second variant selected by PBSn1 was associated with LCE4A-C1orf68, a gene that may be involved in the immune barrier of the epithelium during BC. We performed association tests between the top PBSn1 hits and BC occurrence in our population. The strongest association (P = 0.012) was achieved by the LCE4A-C1orf68 variant. The ancestry-enrichment test detected highly significant signals (P = 1.3 × 10−9) mapping MAK16, a gene with important roles in ribosome biogenesis during the G1 phase of the cell cycle. Our results contribute to a better understanding of the genetic factors involved in adaptation to the pathophysiological consequences of As exposure.

Funder

Fondo Nacional de Desarrollo Científico y Tecnológico “FONDECYT”

Publisher

Oxford University Press (OUP)

Subject

Genetics,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3