Author:
Esarey Justin,Pierce Andrew
Abstract
In this article, we present a technique and critical test statistic for assessing the fit of a binary-dependent variable model (e.g., a logit or probit). We examine how closely a model's predicted probabilities match the observed frequency of events in the data set, and whether these deviations are systematic or merely noise. Our technique allows researchers to detect problems with a model's specification that obscure substantive understanding of the underlying data-generating process, such as missing interaction terms or unmodeled nonlinearities. We also show that these problems go undetected by the fit statistics most commonly used in political science.
Publisher
Cambridge University Press (CUP)
Subject
Political Science and International Relations,Sociology and Political Science
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献