Subtyping hospitalized patients with hypokalemia by machine learning consensus clustering and associated mortality risks

Author:

Thongprayoon Charat1ORCID,Mao Michael A2,Kattah Andrea G1,Keddis Mira T3ORCID,Pattharanitima Pattharawin4,Erickson Stephen B1,Dillon John J1,Garovic Vesna D1,Cheungpasitporn Wisit1ORCID

Affiliation:

1. Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA

2. Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Jacksonville, FL, USA

3. Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Phoenix, AZ, USA

4. Department of Internal Medicine, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand

Abstract

ABSTRACT Background Hospitalized patients with hypokalemia are heterogeneous and cluster analysis, an unsupervised machine learning methodology, may discover more precise and specific homogeneous groups within this population of interest. Our study aimed to cluster patients with hypokalemia at hospital admission using an unsupervised machine learning approach and assess the mortality risk among these distinct clusters. Methods We performed consensus clustering analysis based on demographic information, principal diagnoses, comorbidities and laboratory data among 4763 hospitalized adult patients with admission serum potassium ≤3.5 mEq/L. We calculated the standardized mean difference of each variable and used the cutoff of ±0.3 to identify each cluster's key features. We assessed the association of the hypokalemia cluster with hospital and 1-year mortality. Results Consensus cluster analysis identified three distinct clusters that best represented patients’ baseline characteristics. Cluster 1 had 1150 (32%) patients, cluster 2 had 1344 (28%) patients and cluster 3 had 1909 (40%) patients. Based on the standardized difference, patients in cluster 1 were younger, had less comorbidity burden but higher estimated glomerular filtration rate (eGFR) and higher hemoglobin; patients in cluster 2 were older, more likely to be admitted for cardiovascular disease and had higher serum sodium and chloride levels but lower eGFR, serum bicarbonate, strong ion difference (SID) and hemoglobin, while patients in cluster 3 were older, had a greater comorbidity burden, higher serum bicarbonate and SID but lower serum sodium, chloride and eGFR. Compared with cluster 1, cluster 2 had both higher hospital and 1-year mortality, whereas cluster 3 had higher 1-year mortality but comparable hospital mortality. Conclusion Our study demonstrated the use of consensus clustering analysis in the heterogeneous cohort of hospitalized hypokalemic patients to characterize their patterns of baseline clinical and laboratory data into three clinically distinct clusters with different mortality risks.

Publisher

Oxford University Press (OUP)

Subject

Transplantation,Nephrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3